Role of Certainty Factor in Generating Rough-fuzzy Rule

نویسندگان

  • Jyotirmoy Ghosh
  • S. Mukhopadhyay
چکیده

The generation of effective feature-based rules is essential to the development of any intelligent system. This paper presents an approach that integrates a powerful fuzzy rule generation algorithm with a rough set-assisted feature reduction method to generate diagnostic rule with a certainty factor. Certainty factor of each rule is calculated by considering both the membership value of each linguistic term introduced at time of fuzzyfication of data as well as possibility values, due to inconsistent data, generated by rough set theory at time of rule generation. In time of knowledge inferencing in an intelligent system, certainty factor of each rule will play an important role to find out the appropriate rule to be selected. Experimental results demonstrate the superiority of our approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough Fuzzy MLP : Modular

| A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic algorithm to obtain a structured network suitable for both classiication and rule extraction. The modular concept, based on \divide and conquer" strategy, provides accelerated training and a compact network suitable for generating a minimum number of rules with high certainty valu...

متن کامل

Rough-Fuzzy MLP: Modular Evolution, Rule Generation, and Evaluation

A methodology is described for evolving a Rough-fuzzy multi layer perceptron with modular concept using a genetic algorithm to obtain a structured network suitable for both classification and rule extraction. The modular concept, based on “divide and conquer” strategy, provides accelerated training and a compact network suitable for generating a minimum number of rules with high certainty value...

متن کامل

Discovering Stock Price Prediction Rules of Bombay Stock Exchange Using Rough Fuzzy Multi Layer Perception Networks

In India financial markets have existed for many years. A functionally accented, diverse, efficient and flexible financial system is vital to the national objective of creating a market-driven, productive and competitive economy. Today markets of varying maturity exist in equity, debt, commodities and foreign exchange. Of the 25 stock markets in the country, the most important is Bombay Stock E...

متن کامل

Effect of rule weights in fuzzy rule-based classification systems

This paper examines the effect of rule weights in fuzzy rule-based classification systems. Each fuzzy IF–THEN rule in our classification system has antecedent linguistic values and a single consequent class. We use a fuzzy reasoning method based on a single winner rule in the classification phase. The winner rule for a new pattern is the fuzzy IF–THEN rule that has the maximum compatibility gra...

متن کامل

USING DISTRIBUTION OF DATA TO ENHANCE PERFORMANCE OF FUZZY CLASSIFICATION SYSTEMS

This paper considers the automatic design of fuzzy rule-basedclassification systems based on labeled data. The classification performance andinterpretability are of major importance in these systems. In this paper, weutilize the distribution of training patterns in decision subspace of each fuzzyrule to improve its initially assigned certainty grade (i.e. rule weight). Ourapproach uses a punish...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011